Beneš condition for a discontinuous exponential martingale

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Exponential Martingale Equation

We prove an existence of a unique solution of an exponential martingale equation in the class of BMO martingales. The solution is used to characterize optimal martingale measures.

متن کامل

On Zhao-Woodroofe’s condition for martingale approximation∗

The Zhao-Woodroofe condition has been introduced in [19] and it is a necessary and sufficient condition for the existence of a martingale approximation of a causal stationary process. Here, a nonadapted version is given and the convergence of Cesaro averages is replaced by a convergence of a subsequence. The nonadapted version is of a different form than in other cases, e.g. of Wu-Woodroofe or ...

متن کامل

Martingale Inequalities in Exponential Orlicz Spaces

A result is found which is similar to BDG-inequalities, but in the framework of exponential (non moderate) Orlicz spaces. A special class of such spaces is introduced and its properties are discussed with respect to probability measures, whose densities are connected by an exponential model. Acknowledgement: Thanks are due to Prof. M. Mania (Georgian Academy of Sciences) for the discussions and...

متن کامل

Minimal F Q - Martingale Measures for Exponential Lévy Processes

Let L be a multidimensional Lévy process under P in its own filtration. The f-minimal martingale measure Qq is defined as that equivalent local martingale measure for E(L) which minimizes the f-divergence E [ (dQ/dP ) ] for fixed q ∈ (−∞, 0) ∪ (1,∞). We give necessary and sufficient conditions for the existence of Qq and an explicit formula for its density. For q = 2, we relate the sufficient c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Sciences

سال: 2013

ISSN: 1072-3374,1573-8795

DOI: 10.1007/s10958-013-1162-7